15601951943
禁毒全息模拟.禁毒全息成像 全息禁毒介绍
品牌1: 光谷智能设备
报价: 7888.00元/件
最小起订: 10 件
库存: 12 件
发货期限: 自买家付款之日起 13 天内发货
有效期至: 长期有效
发布时间: 2022-11-05 10:07
发布IP: 120.243.51.105
浏览次数: 159
手机号: 15601951943
电话: 15601951943
详细信息

大家觉得禁毒展厅的实际教育效果好不好?

怎么通俗的介绍全息原理?

“一个系统原则上可以由它的边界上的一些自由度完全描述”,是基于黑洞的量子性质提出的一个新的基本原理。其实这个基本原理是联系量子元和量子位结合的量子论的。其数学证明是,时空有多少维,就有多少量子元;有多少量子元,就有多少量子位。它们一起组成类似矩阵的时空有限集,即它们的排列组合集。全息不全,是说选排列数,选空集与选全排列,有对偶性。即一定维数时空的全息性完全等价于少一个量子位的排列数全息性;这类似“量子避错编码原理”,从根本上解决了量子计算中的编码错误造成的系统计算误差问题。而时空的量子计算,类似生物DNA的双螺旋结构的双共轭编码,它是把实与虚、正与负双共轭编码组织在一起的量子计算机。这可叫做“生物时空学”,这其中的“熵”,也类似“宏观的熵”,不但指混乱程度,也指一个范围。

时间指不指一个范围?从“源于生活”来说,应该指。因此,所有的位置和时间都是范围。位置“熵”为面积“熵”,时间“熵”为热力学箭头“熵”。其次,类似N数量子元和N数量子位的二元排列,与N数行和N数列的行列式或矩阵类似的二元排列,其中有一个不相同,是行列式或矩阵比N数量子元和N数量子位的二元排列少了一个量子位,这是否类似全息原理,N数量子元和N数量子位的二元排列是一个可积系统,它的任何动力学都可以用低一个量子位类似N数行和N数列的行列式或矩阵的场论来描述呢?1、反德西特空间,即为点、线、面内空间,是可积的,因为点、线、面内空间与点、线、面外空间交接处趋于“超零”或“零点能”零,到这里是一个可积系统,它的任何动力学都可以有一个低一维的场论来实现。也就是说,由于反德西特空间的对称性,点、线、面内空间场论中的对称性,要大于原来点、线、面外空间的洛仑兹对称性,这个比较大一些的对称群叫做共形对称群。当然这能通过改变反德西特空间内部的几何来消除这个对称性,从而使得等价的场论没有共形对称性。这可叫新共形共形。如果把马德西纳空间看作“点外空间”,一般“点外空间”或“点内空间”也可看作类似球体空间。反德西特空间,即“点内空间”是场论中的一种特殊的极限。“点内空间”的经典引力与量子涨落效应,其弦论的计算很复杂,计算只能在一个极限下作出。例如上面类似反德西特空间的宇宙质量轨道圆的暴涨速率,是光速的8.88倍,就是在一个极限下作出的。在这类极限下,“点内空间”过渡到一个新的时空,或叫做pp波背景,可**地计算宇宙弦的多个态的谱,反映到对偶的场论中,我们可获得物质族质量谱计算中一些算子的反常标度指数。

这个技巧是,弦并不是由有限个球量子微单元组成的。要得到通常意义下的弦,必须取环量子弦论极限,在这个极限下,长度不趋于零,每条由线旋耦合成环量子的弦可分到微单元10的-33次方厘米,而使微单元的数目不是趋于无限大,从而使得弦本身对应的物理量如能量动量是有限的。在场论的算子构造中,如果要得到pp波背景下的弦态,我们恰好需要取这个极限。这样,微单元模型是一个普适的构造,也清楚了。在pp波这个特殊的背景之下,对应的场论描述也是一个可积系统。


相关产品
相关全息成像产品
产品分类
最新发布
企业新闻
站内搜索
 
联系方式
  • 地址:浦东新区万祥镇宏祥北路83弄1-42号20幢B区215室
  • 电话:15601951943
  • 手机:15601951943
  • 联系人:年经理